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The Markov order of a time series is an important measure of the “memory” of a process, and its knowledge
is fundamental for the correct simulation of the characteristics of the process. For this reason, several tech-
niques have been proposed in the past for its estimation. However, most of this methods are rather complex,
and often can be applied only in the case of Markov chains. Here we propose a simple and robust test to
evaluate the Markov order of a time series. Only the first-order moment of the conditional probability density
function characterizing the process is used to evaluate the memory of the process itself. This measure is called
the “expected value Markov �EVM� order.” We show that there is good agreement between the EVM order and
the known Markov order of some synthetic time series.
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I. INTRODUCTION

A process is Markovian of order n if

p�xt�xt−1,xt−2, . . . ,xt−n, . . . ,xt−m� = p�xt�xt−1, . . . ,xt−n� , �1�

where x is a time series of observations of the process and
p�xt � . . . � represents the conditional probability density func-
tion �PDF� of xt, the value of x at time t. The definition in Eq.
�1� corresponds to setting the state of the process at time t as
a function of the previous n states of the process, from xt−1 to
xt−n, and does not depend on what happened before xt−n.
Note that in the literature xt is often considered Markovian
just in the case n=1, namely,

p�xt�xt−1,xt−2, . . . ,xt−m� = p�xt�xt−1� . �2�

Here, we consider Eq. �1� as the definition of a Markov
process and we define as “first-order Markovian” a process
satisfying Eq. �2�. The estimation of the Markov order of a
process has received constant attention over the past few
decades. In fact, it is the first step in the direction of building
models able to reproduce the main features of the process.
Several techniques have been developed, and applications
can be found in DNA-model building �1�, in the design of
wireless networks �2�, in the analysis of chemical reactions
�3�, in the analysis of high-frequency financial series �4�, and
in the study of turbulence flow fields �5,6�. Most of these
works have been devoted to analyzing the case of Markov
chains, a particular class of Markov processes in which the
domain of xt is a discrete set of states �e.g., �1,7–9��. As a
consequence, if one deals with continuous processes, it is
necessary to discretize the state space �for example in
�7,8,10��. This operation does not always give good results,
particularly when the signal amplitude is wide. In fact, these
methods require a low number of possible discrete states,
demanding then a coarse description of the time series.
Moreover, the use of these techniques has some problematic
aspects. First, they were proposed to test low-order pro-
cesses, whereas in many cases one is interested in higher-
order Markov processes. Second, these techniques often

require one to make assumptions on the Markov order of the
time series, which is unknown, and to check which hypoth-
esis gives the best results �e.g., �11–13��. This requires one to
assume a priori the set of possible values of the Markov
order of the process, which is often a difficult task when
dealing with real-valued time series.

To overcome these problems, in recent years a new
method has been proposed in turbulence research. In particu-
lar, to measure the Markov order of a turbulent time series,
Renner et al. �6� used a statistical test, named the “Wilcoxon
test” after its developer. This test can be applied to continu-
ous time series, without being limited to low Markov orders
and without making assumptions on its value. However, it is
rather complex to implement and its performances are
affected by the presence of a large number of parameters.

In this paper we introduce a further test to assess the
Markov order of a process, that allows one to overcome
some of the above difficulties. This test is different from the
previous techniques in that it does not consider directly the
conditional PDF in Eq. �1�, but only its moments. In particu-
lar, we focus on the expected value of the conditional PDF.
This test evaluates a measure of the memory of the process
that is called the expected value Markov �EVM� order. In
order to verify the qualities and drawbacks of the test, we
compare the EVM order with the known Markov order n of
some synthetic time series.

II. THE PROPOSED METHOD

A. The expected value Markov order

The Markov order of a process, as stated before, can be
expressed by means of Eq. �1�. Note that the information
contained in the conditional PDF of Eq. �1� can also be ob-
tained through the analysis of all of its moments. Therefore,
an alternative way to estimate the Markov order of a process
is to consider the moments instead of the conditional PDF.
However, this perspective alone does not allow one to sim-
plify the problem, because each conditional PDF has an in-
finite number of moments and it is clearly impossible to
handle all of them. A possible simplification consists in deal-
ing with just some of the PDF’s moments. Since we are*Electronic address: enrico.racca@polito.it
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interested in proposing a simple and robust procedure, here
we choose to consider only the first moment, the expected
value. By applying the expectation operator E to Eq. �1�, the
EVM hypothesis is then expressed as

E�xt�xt−1,xt−2, . . . ,xt−n, . . . ,xt−m� = E�xt�xt−1, . . . ,xt−n� .

�3�

We are aware that Eq. �3� is a necessary but not sufficient
condition for Eq. �1� to hold. Nevertheless, if it is tenable
that the two approaches provide equivalent results, then a
useful simplification of the problem is possible. The aim of
this paper is to show that this assumption works well and that
the EVM order can be used to infer the Markov order n of
the process.

A property of conditional expectation is that the expected
value of xt is not a function of xt itself, but in general it
depends on the states of the process from xt−1 to xt−m. The
problem is then to determine which is the greatest value of i,
i.e. n, whose corresponding xt−i contributes significantly to
E�xt �xt−1 , . . . ,xt−m�. Toward this goal, a second simplification
consists in expanding E�xt� in a Taylor series

E�xt�xt−1,xt−2, . . . ,xt−m� = b0 + b11xt−1 + ¯ + b1lxt−1
l + b21xt−2

+ ¯ + b2lxt−2
l + b1

*xt−1xt−2 + ¯

+ bm1xt−m + ¯ + bmlxt−m
l + ¯ �4�

where the bik are the coefficients of the powers of xt−i. Note
that, if the functional dependence of E�xt� on xt−i is
not smooth, the Taylor series expansion does not exist and
Eq. �4� represents only a polynomial interpolation of this
functional dependence.

To determine the Markov order we search for the greatest
i for which at least one of the coefficients bik is statistically
different from zero. When all the coefficients are equal to
zero for i�n, one can state that

E�xt�xt−1,xt−2, . . . ,xt−n, . . . ,xt−m� = E�xt�xt−1, . . . ,xt−n� ,

�5�

and the process is said to be nth-order Markovian in the
average, i.e., the EVM order is equal to n.

Proceeding in a similar manner, it would be possible to
formulate expressions analogous to Eq. �3� also for the
higher-order moments. We could then define a Markov order
“in the variance,” one “in the skewness,” and so on. How-
ever, this would correspond to losing the simplicity and
robustness of the proposed approach. Therefore, we will
consider only the first-order moment.

B. The evaluation of the expansion’s terms

The EVM order can be found by evaluating which is the
greatest i for which at least one of the terms containing xt−i in
Eq. �4� has a bik coefficient statistically different from zero.
To do that, one should test the partial dependence of E�xt� on
the regressors xt−i. However, simple statistical tests for the
partial dependence are not available. The available tests
of independence account for the indirect dependencies too.
For example, consider an auto-regressive process of the first

order �AR1�. If one tests the dependence of E�xt� on xt−2, one
will find that E�xt� depends on xt−2; however, an AR1 is
first-order Markovian. The dependence one finds is not a
direct one, but it is due to the dependence on xt−1. Owing to
these difficulties in testing the partial dependence, we choose
to test the partial correlation via the multiple linear regres-
sion scheme. Again, we are aware that the possible lack
of partial correlation is a necessary but not sufficient condi-
tion for the partial independence of E�xt� on the xt−i terms.
However, since we are interested in a simple and robust test,
we accept this simplification, provided that it produces
acceptable results, as will be shown in the rest of the paper.

Being interested in the robustness of the test, we are also
interested in avoiding the proliferation of the number of
terms in Eq. �4�. With this aim, we introduce a further sim-
plification, consisting in omitting the mixed products. We
will return later on to the implication of this simplification.
Without the mixed terms Eq. �4� becomes

E�xt�xt−1,xt−2, . . . ,xt−m� = b0 + b11xt−1 + ¯ + b1lxt−1
l + b21xt−2

+ ¯ + b2lxt−2
l + ¯ + bm1xt−m

+ ¯ + bmlxt−m
l + ¯ . �6�

In the multiple linear regression scheme, the dependent
variable y is expressed as a linear function of p−1 indepen-
dent terms, zi,

y = �0 + �1z1 + �2z2 + ¯ + �p−1zp−1 + � , �7�

where � is the error term. In the case under analysis, y=xt
and the zi terms are the powers of xt−i,

z11 = xt−1, z12 = xt−1
2 , ¯ , z1l = xt−1

l

z21 = xt−2, z22 = xt−2
2 , ¯ , z2l = xt−2

l

�

zm1 = xt−m, zm2 = xt−m
2 , ¯ , zml = xt−m

l ,

where l is the maximum considered power for each xt−i and
m is the number of considered orders. Equation �7� can be
written for each value of t. In this way we get a linear system
of equations

y = Z� + � ,

where y is the column vector of the xt values for each t, � is
the vector of the regression coefficients, Z is a matrix
whose columns correspond to the powers of the various xt−i,
whereas the rows correspond to the values they assume
when t varies. Finally, � represents the vector of the differ-
ences between the xt values and their corresponding linear
estimators, for each t.

This system can be solved by means of the multiple linear

regression technique �e.g., see �14��, giving the estimators �̂
of the coefficients �,

�̂ = �ZTZ�−1ZTy . �8�

A test variable Tik for the hypothesis �ik=0 is then defined
as
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Tik =
�̂ik

��̂2cii�
, �9�

where cii� is the ith diagonal element of the �ZTZ�−1 matrix
and the subscript ik means that we are considering the
significance of the kth power of xt−i. In the case that the
errors � have a normal distribution, the test variable Tik has a
Student’s t distribution with j− p degrees of freedom,
t�Tik , j− p�, j being the number of elements of the time
series �the size of y� and p−1 the number of parameters
to be estimated �the size of ��. The significance Sik of the
coefficient �ik, with respect to the hypothesis �ik=0, is then

Sik = �
−Tik

Tik

t�T�, j − p�dT�. �10�

We consider significantly different from zero the powers
xt−i

k for which Sik�1−�, where � is the selected significance
level.

III. CASE STUDIES

In order to show the reliability of the introduced simpli-
fications, we apply the test to some synthetic time series.
These time series are chosen to be the observations of pro-
cesses of known Markov order n. We consider the following
processes: �i� the Hénon map, which is a deterministic cha-
otic process, �ii� two autoregressive �AR� processes, for
which xt linearly depends on the powers of xt−i, and �iii� a
nonlinear autoregressive �NAR� process, that instead is char-
acterized by a nonlinear dependence of xt on the powers of
the past states of the process. This last case study is chosen
to show that the omission of the mixed terms in Eq. �4� does
not worsen the test’s results. For each of the considered pro-
cesses, we evaluate the EVM order and check if this is equal
to n.

A. The Hénon map

The Hénon map is a deterministic chaotic process,
generated by the equation

xt = 1 − 1.4xt−1
2 + 0.3xt−2. �11�

Since it is a deterministic process, it is certainly a Markov
process, even if of a particular type �see �15�, p. 74�. In
particular, the Hénon map is a Markov process of order 2,
since every xt depends only on xt−1 and xt−2. To avoid nu-
merical problems when handling the matrix Z �see Eq. �8��,
we add a small dynamical Gaussian noise 0.001�t, where �t
has zero mean and unitary standard deviation. Figure 1�a�
shows the significance of the coefficients �ik obtained by
applying the EVM method. As for the other case studies, we
choose to represent log10�1−Sik� instead of Sik, which is the
significance of xt−i

k . This allows one to stretch the part of the
plot closer to 1. We also fix Sik=1−10−6 when Sik�1
−10−6, for graphical convenience. The abscissas correspond
to the powers xt−i

k , with i varying from 1 to m and k increas-
ing from 1 to l, and the ordinates are the corresponding sig-
nificance values. The test correctly recognizes that only the

coefficients multiplying xt−1 and xt−2 are statistically different
from zero.

Since we are not interested in finding the exact depen-
dence of E�xt� on the previous states xt−1 , . . . ,xt−m, but to
estimate the memory of the process, in what follows only the
maximum Sik �hereafter S� for each xt−i is shown. Therefore,
in the present case we obtain the diagram in Fig. 1�b�, where
the abscissas are the orders from xt−1 to xt−m, whereas the
ordinates correspond to the maximum significance among
the powers of the corresponding order. The process is recog-
nized from this figure to have EVM order is equal to 2,
which coincides with the actual Markov order of the process.

Some methodological details deserve further comments.
Here and in the following cases, the significance level � is
fixed at 0.01. Being �=0.01, one has a 1% probability to
consider statistically significant the contribution of a nonsig-
nificant term. Since we choose to represent just the maxi-
mum among the Sik values, with fixed i and k varying from 1
to l, the probability is greater than � and approximately
equal to l�. However, this expression for the significance
would be valid just in the case the powers xt−i

k were indepen-
dent. Since they are not, the actual significance is between �
and l�. The number l of powers for each order is chosen to
be equal to 5 in all of the case studies, whereas the number of
orders m is initially fixed at 5, and successively increased if
necessary, following the indications reported in the next

FIG. 1. Significance of the first five orders of the Hénon map
�a�. The horizontal line is the threshold of significance, �=0.01: xt−i

k

is statistically significant when the corresponding full circle is over
the threshold. Five powers are considered for each order, each cor-
responding to the number reported near the full circle. Only xt−1

2 and
xt−2 are statistically significant. In �b� we report only the maximum
value of Sik, where k varies from 1 to 5 �full circles�.
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subsection. The choice of the number of orders and powers
in the Taylor expansion of Eq. �4� is particularly important
and has effects on the stability, robustness, and power of the
test. The following section is devoted to this topic. In this
section we explain also the reason for the choice m= l=5.

B. The choice of the number of orders and powers
in the expansion

Before proceeding with the other case studies, it is neces-
sary to establish the behavior of the test when l and m are
changed. Moreover, the stability, robustness, and power of
the test need to be evaluated when the series length N varies.
This allows one to understand which criteria have to be con-
sidered in the choice of l and m in the Taylor expansion of
Eq. �6�. In building the test we are interested in increasing m
and l and to include the mixed products of powers of the
terms from xt−1 to xt−m, in order to obtain the best possible
approximation of E in Eq. �4�. On the other hand, when the
number of the expansion’s terms is increased, the stability,
robustness, and power of the test are reduced as a conse-
quence. The final choice should be a balance between these
two contrasting necessities.

Consider first the case of the mixed products: if one keeps
them in the expansion, the number of considered powers
should be limited to 2 or 3, to avoid an excessive increase of
the number of � coefficients. A possible alternative is to omit
the mixed terms and increase the number of considered pow-
ers. This second alternative is found to give better results. As
for the choice of m and l, we explore the behavior of the test
for the Hénon map when a different number of powers l is
chosen for a fixed number of orders m �see Fig. 2�a��, and
when different values of m are investigated with a varying l
�Fig. 2�b��. We find that the power of the test decreases when
the total number of parameters grows. In both Figs. 2�a� and
2�b�, this can be seen by observing that the power of the test
becomes lower for a fixed length N of the series, when the
number of powers or the number of orders is increased. This
behavior is reasonable, because one has to evaluate a greater
number of parameters with the same number N of elements;
as a consequence the uncertainty grows. On the other hand,
one cannot excessively decrease l and m because otherwise
the Taylor expansion of E in Eq. �4� would lose its validity,
when more complex processes are considered. As mentioned,
a compromise should be searched for, which we find by tak-
ing l=5 and m=5. It is important to notice that for m=3 the
power of the test is almost constant and close to 100 �see Fig.
2�b�; the exact value is 	97�. This is due to the fact that the
Hénon map is a second-order Markov process, so 3 is the
most efficient choice for m in this case. It could, however,
happen that the chosen m is lower than the Markov order of
the process. In this case we find that xt−m results to be sig-
nificant. When the last considered order xt−m is significant,
one must increase m in a progressive manner, until xt−m turns
out not to be significant. We show an example of this proce-
dure in the following, by analyzing the case of the AR10
process.

The results reported in Figs. 1�a� and 1�b� refer to an
analysis carried out on a time series of 10 000 elements. The

result of the test is stable when other series of the same
length are generated and analyzed. In fact, for 93 out of 100
generated series the test correctly recognizes the Hénon map
as a second-order Markov process. Note that the power of
the test is not simply equal to 1−� because we are testing the
maximum of the Sik values rather than each of them sepa-
rately. We also find that the power of the test ceases to in-
crease when N is greater than 250, for every value of l and
m. Similar results can be observed also for the other case
studies, i.e., the method does not need a great amount of data
to be applied with success.

C. An AR1 process

The AR1 process is an autoregressive model of the first
order, governed by the equation

xt = 	xt−1 + ��t, �12�

where 	=0.8, �=0.5, and �t is a Gaussian white noise term
with zero mean and unitary standard deviation. The AR1 is
obviously a Markov process of the first order, i.e., n=1. The
test works well also in this case �see Fig. 3�: in fact, the test

FIG. 2. �a� Percentage of successes of the proposed test when it
is applied with five orders and a number of powers increasing from
3 to 7. �b� Percentage of successes of the proposed test when it is
applied with five powers and a number of orders increasing from 3
to 7. In both cases the series’ length N varies from 50 to 20 000
elements and the horizontal line represents the power of the test for
m= l=5 and N=10 000.
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correctly determines an EVM order equal to 1. This happens
for 89 out of 100 series of 10 000 elements each. The results
do not change when the series length varies, provided that at
least 150 elements are available.

D. An AR10 process

The AR10 process is an autoregressive process of the
tenth order, whose present state xt depends on xt−1 and xt−10
according to the expression

xt = a1xt−1 + a10xt−10 + �t, �13�

where a1=−0.5, a10=−0.5, and �t has the same properties
mentioned in the preceding sections. We first apply the test
with five orders and find that xt−5 is significative �Fig. 4�a��.
Since the last order is significant, we then increase the num-

ber of orders, still obtaining the same results for all m
10
�Figs. 4�b� and 4�c� report the results for seven and nine
orders�. Finally, the test is applied with m greater than 10,
with good results �see Fig. 4�d� for the case m=15�. In fact,
the test establishes that the EVM order is equal to 10. The
results are again stable when one considers different series of
the same length, with powers slightly lower than before �82
successes out of 100, for a 10 000-element series�. This is an
expected consequence of the fact that the number of consid-
ered orders has to be increased. The series length above
which the power of the test ceases to increase is 500
elements in this case.

E. A nonlinear autoregressive process

To demonstrate that the results do not change when ne-
glecting the mixed products in Eq. �4�, we apply the test with
and without the mixed products to a time series that is the
observable of a nonlinear autoregressive model, generated by
the equation

xt = − 0.00113 + 0.0613xt−1
2 − 0.0628xt−2 − 0.053xt−2xt−1

+ 0.0573xt−2xt−1
2 − 0.0234xt−2

2 xt−1 − 0.0675xt−3 − 0.02xt−3
2

− 0.5071xt−3xt−2 − 0.044xt−3
2 xt−1 + 0.001�t,

where �t is the same as in the previous cases. This NAR
process is third-order Markovian, since xt depends on xt−1,
xt−2, and xt−3 �i.e., n=3�. Depending in a complex way on the
mixed terms, the NAR process is an ideal candidate to check
if the test works also in this case. In this case study, we apply
the test with l=3, because it is necessary to evaluate a greater
number of parameters to take into account the mixed

FIG. 3. Significance of the first five orders of the AR1 process.
The first order is significant, so that the EVM order is equal to 1.

FIG. 4. �a� Significance of the
first five orders of the AR10 pro-
cess; xt−5 is significant, so the
number of orders is increased to
�b� 7 �c� 9, obtaining the same be-
havior; �d� finally the number m
of considered orders is increased
to 15 �d�: the algorithm correctly
recognizes the AR10 as a tenth-
order process.

TEST TO DETERMINE THE MARKOV ORDER OF A TIME… PHYSICAL REVIEW E 75, 011126 �2007�

011126-5



products in the Taylor expansion �i.e., l=5 would make the
test unstable�. There is not a great difference in the results
the test gives with and without the mixed products �see Fig.
5�. We find that the test, also when one neglects the mixed
terms, allows one to obtain good results, since it estimates
EVM order equal to 3, with high power �91 out of 100 posi-
tive answers, when the series has 10 000 elements�. How-
ever, the minimum series length that guarantees a positive
result is greater than before. The series must consist of, at
least, 10 000 elements, both when one takes into account the
mixed products and when one neglects them. It is interesting
to mention that xt−1 in both cases is not significant, whereas
it appears in the equation of the process. This behavior is
probably due to the fact that there is just one term that de-
pends only on xt−1 and it has a very low multiplicative coef-
ficient. The other terms containing xt−1 depend also on other
xt−i terms, with i�1, and they are attributed to the greater ith
orders: i.e., the term −0.0234xt−2

2 xt−1 is considered contribut-

ing to order 2 in the multiple linear regression technique.
Thus, the dependence on xt−1 is so weak that it is “covered”
by the stronger dependencies on xt−2, xt−3, and their products.

IV. CONCLUDING REMARKS

In the past few decades the problem of determining the
Markov order of a time series has received constant atten-
tion, being the first step in the direction of building a model
able to reproduce the characteristics of the process. Many
works have been devoted to this topic, but a simple, flexible
technique that can be applied to a continuous time series of
unknown Markov order is still lacking. To overcome some of
the above difficulties, a simple and robust test to determine
the Markov order of a process has been proposed. The test
measures the memory of the process by means of the condi-
tional PDF’s first-order moment alone. To reach this aim a
Taylor expansion of the expected value is performed and the
statistical significance of the terms in the expansion is evalu-
ated using a multiple linear regression scheme. The maxi-
mum i for which the terms containing xt−i give a statistically
nonzero contribution to the expected value of xt represents a
measure of the memory of the expected value. This measure,
used to evaluate the Markov order of the process, has been
called the expected value Markov order. The use of the pro-
posed test has some advantages. First, the test has a high
power. In fact, applying the test to some synthetic time series
of known Markov order n, the EVM order coincides with n
in a high percentage of realizations. Second, the test is ro-
bust, i.e., it maintains a high power also when applied to
short time series. Finally, the test is simple to use and can be
applied to both continuous and discrete time series, without
making a priori assumptions on the Markov order of the
process.
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